Outlier Detection Algorithms for Least Squares Time Series Regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier detection algorithms for least squares time series regression 1

We review recent asymptotic results on some robust methods for multiple regression. The regressors include stationary and non-stationary time series as well as polynomial terms. The methods include the Huber-skip M-estimator, 1-step Huber-skip M-estimators, in particular the Impulse Indicator Saturation, iterated 1-step Huber-skip M-estimators and the Forward Search. These methods classify obse...

متن کامل

Algorithms for Segmenting Time Series

As with most computer science problems, representation of the data is the key to ecient and eective solutions. Piecewise linear representation has been used for the representation of the data. This representation has been used by various researchers to support clustering, classication, indexing and association rule mining of time series data. A variety of algorithms have been proposed to obtain...

متن کامل

PEDOMODELS FITTING WITH FUZZY LEAST SQUARES REGRESSION

Pedomodels have become a popular topic in soil science and environmentalresearch. They are predictive functions of certain soil properties based on other easily orcheaply measured properties. The common method for fitting pedomodels is to use classicalregression analysis, based on the assumptions of data crispness and deterministic relationsamong variables. In modeling natural systems such as s...

متن کامل

Fuzzy least-squares algorithms for interactive fuzzy linear regression models

Fuzzy regression analysis can be thought of as a fuzzy variation of classical regression analysis. It has been widely studied and applied in diverse areas. In general, the analysis of fuzzy regression models can be roughly divided into two categories. The 0rst is based on Tanaka’s linear-programming approach. The second category is based on the fuzzy least-squares approach. In this paper, new t...

متن کامل

Extrapolating time series by discounted least squares

An approximating function is fitted to a time series, such as daily observation. The fitting is carried out over all past time by weighted least squares with an exponential weight factor• The approximating function is restricted to be a solution of a certain linear differential equation of the mth order having constant coefficients. The solution which minimizes the least square expression can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2014

ISSN: 1556-5068

DOI: 10.2139/ssrn.2510281